若圆过点且与直线相切,设圆心的轨迹为曲线,、为曲线上的两点,点,且满足.(1)求曲线的方程;(2)若,直线的斜率为,过、两点的圆与抛物线在点处有共同的切线,求圆的方程;(3)分别过、作曲线的切线,两条切线交于点,若点恰好在直线上,求证:与均为定值.
已知直线:,,, (Ⅰ)求与交点的坐标; (Ⅱ)求过点,且与垂直的直线方程.
如图,一个几何体的三视图△是边长为的等边三角形, (Ⅰ)画出直观图; (Ⅱ)求这个几何体的体积
(本小题满分14分)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列. (1)求证:数列{an}是等差数列; (2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn; (3)若cn= f(an) lg f (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
(本小题满分13分)已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,D是AB的中点. (1)求动点D的轨迹C的方程; (2)若过点(1,0)的直线l与曲线C交于不同两点P、Q, ①当|PQ|=3时,求直线l的方程; ②设点E(m,0)是x轴上一点,求当·恒为定值时E点的坐标及定值.
(本小题满分12分)已知是边长为1的正方体,求: ⑴直线与平面所成角的正切值; ⑵二面角的大小; ⑶求点到平面的距离。