设A={-1,1,3},B={a+2,a2+4},A∩B={3},求实数a的取值范围 ,
(本题满分14分,第(1)小题6分,第(2)小题8分) 如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=,点E是线段SD上任意一点。 (1)求证:AC⊥BE;(2)若二面角C-AE-D的大小为,求线段的长。
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.在数列中,,.(1)设,证明:数列是等差数列;(2)设数列的前项和为,求的值;(3)设,数列的前项和为,,是否存在实数,使得对任意的正整数和实数,都有成立?请说明理由.
本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.已知的顶点在椭圆上,在直线上,且.(1)求边中点的轨迹方程;(2)当边通过坐标原点时,求的面积;(3)当,且斜边的长最大时,求所在直线的方程.
本题共有2个小题,第1小题满分6分,第2小题满分10分.某火山喷发停止后,为测量的需要,设距离喷口中心米内的圆环面为第区、米至米的圆环面为第区、……、第米至米的圆环面为第区,…,现测得第区火山灰平均每平方米为1000千克、第区每平方米的平均重量较第区减少、第区较第区又减少,以此类推,求:(1)离火山口1225米处的圆环面平均每平方米火山灰重量(结果精确到1千克)?(2)第几区内的火山灰总重量最大?
本题共有2个小题,第1小题满分8分,第2小题满分6分.已知函数, .(1)若,求函数的值;(2)求函数的值域.