如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC的三个顶点都在格点上.画出将△ABC向右平移3个单位,再向上平移1个单位所得的△A′B′C′;(友情提醒:对应点的字母不要标错!)建立如图的直角坐标系,请标出△A′B′C′的外接圆的圆心P的位置,并写出圆心P的坐标:P(________);将△ABC绕BC旋转一周,求所得几何体的全面积.(结果保留π)
计算: (1)(因式分解法) (2)(公式法) (3)(配方法) (4)(因式分解法)
如图,已知A、B、C、D为矩形的四个顶点,AB=16㎝,AD=6㎝,动点P、Q分别从点A、C同时出发,点P以3㎝/s的速度向点B移动,一直到点B为止,点Q以2㎝/s的速度向点D移动.问 (1)P、Q两点从出发开始几秒时,点P点Q间的距离是10厘米. (2)P、Q两点间距离何时最小。
对称轴为直线 的抛物线y =x2+bx+c,与轴相交于,两点,其中点的坐标为(3,0). (1)求点的坐标. (2)点是抛物线与轴的交点,点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.
抛物线。 (1)求顶点坐标,对称轴; (2)取何值时,随的增大而减小? (3)取何值时,=0;取何值时,>0;取何值时,<0
(本题10分)某商场礼品柜台新年期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?