如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴求经过A、B、C三点的抛物线的解析式;当BE经过(1)中抛物线的顶点时,求CF的长;在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标
有一艘渔船上午九点在A处沿正东方向航行,在A处测得灯塔C在北偏东60°方向上,行驶2小时到达B处,测得灯塔C在北偏东15°方向,求∠C的度数。
已知:如图,// ,求图形中的x的值.
如图,EF∥AD,∠1=∠2, 将求证AB∥DG的过程填空完整. 证明:∵EF∥AD() ∴∠2=() 又∵∠1=∠2() ∴∠1=∠3() ∴AB∥()
如图为了确定各建筑物的位置:(1)以火车站为原点建立直角坐标系. (2)写出市场、超市的坐标.、 (3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4 个单位长度,再画出平移后的△A/B/C/. (4)△ABC的面积是_________
如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2cm,AB=8cm,CD=10cm. (1)求梯形ABCD的周长; (2)动点P从点B出发,以1cm/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以1cm/s的速度沿C→D→A方向向点A运动;过点Q作QF⊥BC于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之结束,设运动时间为t秒.问: 在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.