设函数在处取得极值,且曲线在点处的切线垂直于直线.(Ⅰ) 求的值;(Ⅱ)求曲线和直线所围成的封闭图形的面积;(Ⅲ)设函数,若方程有三个不相等的实根,求的取值范围.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值.
如图,在四棱锥PABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点. (1)求证:平面PAC⊥平面PCD;(2)求证:CF∥平面BAE.
已知向量m=,n=.(1)若m·n=1,求cos 的值;(2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos B=bcos C,求函数f(A)的取值范围.
已知数列{an}的前三项分别为a1=5,a2=6,a3=8,且数列{an}的前n项和Sn满足Sn+m=(S2n+S2m)-(n-m)2,其中m,n为任意正整数.(1)求数列{an}的通项公式及前n项和Sn;(2)求满足-an+33=k2的所有正整数k,n.
已知函数f(x)=-x3+x2,g(x)=aln x,a∈R.(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;(2)设F(x)=若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.