某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=-2x+80.设这种产品每天的 销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? (参考关系:销售额=售价×销量,利润=销售额-成本)
解不等式组,并把解集表示在数轴上。
苏科版七年级(上册第119页)这样写道: 棱柱的侧棱长相等,棱柱的上下底面是相同的多边形,直棱柱的侧面都是长方形.底面是正三角形的直棱柱叫正三棱柱. 现给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明. 如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.
如图,平面直角坐标系中,抛物线与轴交于点A、B(点A在 点B左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段AC交于点N,点P为线 段AC上一个动点(与A、C不重合) . (1)求点A、B的坐标; (2)在抛物线的对称轴上找一点D,使|DC-DA|的值最大,求点D的坐标; (3)过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点的坐标.
如图,在直角坐标系中,半径为1的⊙圆心与原点重合,直线分别交轴、轴于点、点,若点的坐标为且. ⑴若点是⊙上的动点,求到直线的最小距离,并求此时点的坐标; ⑵若点从原点出发,以1个单位/秒的速度沿着线路运动,回到点停止运动,⊙随着点的运动而移动. ①求⊙在整个运动过程中所扫过的面积; ②在⊙整个运动过程中,⊙与的三边相切有种不同的情况,分别写出不同情况下,运动时间的取值 .
市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示: (1)求月销售量y(万件)与销售单价x(元)之间的函数关系式; (2)(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人? (3)若该公司有80名员工,求出公司月利润W(万元)与x(元)之间的函数关系式;并说明该公司最早可在几个月后还清贷款.