如图所示,已知点A、E、F、D在同一条直线上,AE=DF,BF⊥AD,CE⊥AD, 垂足分别为F、E,BF=CE,求证:AB∥CD
在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是 ;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第 组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?
在如图的4×4的方格内画△ABC,使它的顶点都在格点上,使AB=2,BC=,AC=,并求出最长边上的高。
(1)计算:()-2-+;(2)先化简,再求值:-÷,其中a是方程x2+3x+1=0的根.
阅读理解 如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角. 小丽展示了确定∠BAC是△ABC的好角的两种情形. 情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合; 情形二:如图3,沿 △ABC的∠BAC的平分线AB1折叠,剪掉重叠部分; 将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合. 探究发现 (1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC (填“是”或“不是”)△ABC的好角; (2)若经过三次折叠发现∠BAC是△ABC的好角,请探究∠B与∠C之间的等量关系(不妨设∠B>∠C). 根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C之问的等量关系为 .(不妨设∠B>∠C) 应用提升: (3)小丽找到一个三角形,三个角分别为15º,60º,l05º,发现60º和l05º的两个角都是此三角形的好角. 请你完成,如果一个三角形的最小角是4º,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
如图1,点O是边长为1的等边△ABC内的任一点,设∠AOB=°,∠BOC=°(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示. 求证:OD=OC。(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示. 求证:OA=DE(3)在(2)的基础上, 当、满足什么关系时,点B、O、D、E在同一直线上。并直接写出AO+BO+CO的最小值。