三棱柱ABC—A1B1C1中,侧棱与底面垂直,, ,分别是,的中点. (1)求直线MN与平面A1B1C所成的角; (2)在线段AC上是否存在一点E,使得二面角E-B1A1-C的余弦值 为?若存在,求出AE的长,若不存在,请说明理由.
如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证:PB2=PE·PF.
某企业为加大对新产品的推销力度,决定从今年起每年投入100万元进行广告宣传,以增加新产品的销售收入.已知今年的销售收入为250万元,经市场调查,预测第n年与第n-1年销售收入an与an-1(单位:万元)满足关系式:an=an-1+-100. (1)设今年为第1年,求第n年的销售收入an; (2)依上述预测,该企业前几年的销售收入总和Sn最大.
已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*). (1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式; (2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.
已知数列{an}的前n项和为Sn,a1=2.当n≥2时,Sn-1+1,an,Sn+1成等差数列. (1)求证:{Sn+1}是等比数列; (2)求数列{nan}的前n项和Tn.
已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项. (1)求数列{an}的通项公式与前n项和Sn; (2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[+],若存在,求m的值;若不存在,说明理由.