已知一次函数中,当时,函数值为。求:这个一次函数的解析式?并画出这个一次函数的图像。求出这个函数图象与另一个正比例函数的交点坐标,并根据图象写出使一次函数的值大于正比例函数的值时的取值范围。
如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.
如图,A(0,1),M(3,2),N(4,4) , 动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为 t 秒.(直线y = kx+b平移时k不变)(1)当t=3时,求 l 的解析式;(2)若点M,N位于l 的异侧,确定 t 的取值范围.
探索与研究:方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.
化简求值:(1)已知x=-1,求x2+3x-1的值;(2)已知,求值.