设椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a , b > 0 ) 过 M ( 2 , 2 ) , N ( 6 , 1 ) 两点, O 为坐标原点, (1)求椭圆 E 的方程; (2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆 E 恒有两个交点 A , B ,且 O A ⇀ ⊥ O B ⇀ ?若存在,写出该圆的方程,若不存在说明理由。
设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和 轴的垂线,垂足分别为.(1)写出的单调递减区间(不必证明);(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设为坐标原点,求四边形面积的最小值.
设函数,其中,区间(Ⅰ)求的长度(注:区间的长度定义为);(Ⅱ)给定常数,当时,求长度的最小值.
已知函数,其中常数a > 0.(1) 当a = 4时,证明函数f(x)在上是减函数;(2) 求函数f(x)的最小值.
已知函数.(1)求函数的定义域,并判断的奇偶性;(2)用定义证明函数在上是增函数;(3)如果当时,函数的值域是,求与的值.
已知过点的直线与抛物线交于两点,为坐标原点.(1)若以为直径的圆经过原点,求直线的方程;(2)若线段的中垂线交轴于点,求面积的取值范围.