设椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a , b > 0 ) 过 M ( 2 , 2 ) , N ( 6 , 1 ) 两点, O 为坐标原点, (1)求椭圆 E 的方程; (2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆 E 恒有两个交点 A , B ,且 O A ⇀ ⊥ O B ⇀ ?若存在,写出该圆的方程,若不存在说明理由。
(本小题满分14分)已知,复数z =. (Ⅰ)实数m取什么值时,复数z为纯虚数? (Ⅱ)实数m取什么值时,复数z对应的点在直线上?
已知椭圆的离心率为,两焦点之间的距离为4. (Ⅰ)求椭圆的标准方程; (Ⅱ)过椭圆的右顶点作直线交抛物线于A、B两点, (1)求证:OA⊥OB; (2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.
已知函数是函数的极值点,其中是自然对数的底数. (Ⅰ)求实数的值; (Ⅱ)直线同时满足: ① 是函数的图象在点处的切线, ② 与函数的图象相切于点. 求实数b的取值范围.
已知函数() (Ⅰ)求函数的单调区间; K] (Ⅱ)若以函数()图像上任意一点为切点的切线的斜率恒成立,求实数的最小值.
已知函数() (Ⅰ)求函数的单调递减区间; (Ⅱ)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值.