已知椭圆+=1(a>b>0)上的点M (1, )到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。(Ⅰ)求此椭圆的方程及离心率;(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。
(本小题12分)已知c>0,设p:函数在R上单调递减;q:不等式>1的解集为R,如果“p或q”为真,且“p且q”为假,求c的取值范围。
(本小题10分)已知圆与y轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程。
.已知向量,且,⑴求的取值范围;⑵求证;⑶求函数的取值范围.
.函数f(x)=,满足f()=f(0),⑴求函数f(x)的最小正周期;⑵求函数f(x)在上的最大值和最小值.
.定义域为R的函数f(x)=a-2bcosx(b>0)的最大值为,最小值为,求a,b 的值.