已知椭圆+=1(a>b>0)上的点M (1, )到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。(Ⅰ)求此椭圆的方程及离心率;(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。
(本小题满分10分)选修4-4:坐标系和参数方程.已知圆:(为参数),直线:(为参数),.(1)若以原点为极点,以轴正半轴为极轴建立极坐标系,求出直线的极坐标方程; (2)试判断直线与圆的位置关系,并说明理由,若相交,求出其相交弦长.
(本小题满分10分)选修4-1:几何证明选讲.如下图所示,内接于圆,,直线切圆于点,,与相交于点.求证:.
(本小题满分12分)已知椭圆:的右焦点和上顶点在直线上,、为椭圆上不同两点,且满足.(1)求椭圆的标准方程;(2)证明:直线恒过定点;(3)求的面积的最大值,并求此时直线的方程.
选修4-5:不等式选讲设函数=,.不等式的解集为.(1)求;(2)若存在,使得,求实数的取值范围;
(本小题满分10分)选修:4-4:坐标系与参数方程已知:圆的参数方程为,圆的极坐标方程为,(1)求圆的普通方程与圆的直角坐标方程;(2)若圆与圆外切,求实数的值;