在ΔABC中,a,b, c分别是角A,B, C的对边,向量,,. 且(I) 求角B的大小;(II) 设,且的最小正周期为,求在区间上的最大值和最小值.
已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆的标准方程; (2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点. (i)证明:平分线段(其中为坐标原点); (ii)当最小时,求点的坐标.
设等差数列的公差为,点在函数的图象上(). (1)若,点在函数的图象上,求数列的前项和; (2)若,函数的图象在点处的切线在轴上的截距为,求数列的前项和.
三棱锥 A - B C D 及其侧视图、俯视图如图所示.设 M , N 分别为线段 A D , A B 的中点, P 为线段 B C 上的点,且 M N ⊥ N P .
(1)证明: P 为线段 B C 的中点; (2)求二面角 A - N P - M 的余弦值.
一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为,求的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? (3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
已知函数 f ( x ) = sin ( 3 x + π 4 ) . (1)求 f ( x ) 的单调递增区间; (2)若 α 是第二象限角, f ( α 3 ) = 4 5 cos ( α + π 4 ) cos 2 α ,求 cos α - sin α 的值.