已知抛物线.(Ⅰ)过点M作抛物线的切线,求此切线方程;(Ⅱ)过定点的直线与抛物线相交于两点、,抛物线在、两点处的切线的交点为,试求点的轨迹方程.
本小题满分16分) 如图,已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点. (1)求圆的半径; (2)过点作圆的两条切线交椭圆于两点,
.
判断直线与圆的位置关系并说明理由.
(本小题满分15分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
(本小题满分15分)已知,函数.(Ⅰ)若在处取得极值,求函数的单调区间;(Ⅱ)求函数在区间上的最大值.(注:)
(本小题满分14分)如图所示,在边长为12的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图2所示的三棱柱.(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积;
(本小题满分14分)已知以角为钝角的的内角A、B、C的对边分别为a、b、c,,且(1)求角的大小;(2)求的取值范围.