已知抛物线的焦点为F,其准线与x轴交于点,过点作斜率为k的直线l交抛物线于A、B两点,弦AB的中点为P,AB的垂直平分线与 x轴交于点E(0)。(1)求k的取值范围;(2)求证:;(3)△PEF能否成为以EF为底的等腰三角形?若能,求出k的值,若不能,请说明理由。
已知球的两个平行截面的面积分别是5π和8π,它们位于球心的同一侧,且相距为1,求球的体积。
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点M(4, ) (1)求双曲线方程; (2)若点N(3、m)在双曲线上,求证:NF 1· NF2=0; (3)求F1NF2的面积
、一个正三棱柱的底面边长是4,高是6,过下底面的一条边和该边所对的上底面的顶点作截面,求这个截面面积。
已知直线及定点P(3,-2)依下列条件求直线l1和l2的方程: (1)l1过点P且l1// l; (2)l2过点P且l2⊥l
如图所示,AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC