设是给定的正整数,有序数组同时满足下列条件:① ,; ②对任意的,都有.(1)记为满足“对任意的,都有”的有序数组的个数,求;(2)记为满足“存在,使得”的有序数组的个数,求.
已知抛物线 ,(1)用配方法确定它的顶点坐标、对称轴;(2)取何值时,随增大而减小? (3)取何值时,抛物线在轴上方?
在△ABC中,AB=AC=5,BC=6,求cosB、sinA
当a>0且x>0时,因为,所以,从而(当x=时取等号).记函数,由上述结论可知:当x=时,该函数有最小值为2(1)已知函数y1=x(x>0)与函数,则当x= 时,y1+y2取得最小值为 (2)已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>−1),求的最小值,并指出取得该最小值时相应的x的值.
如图是一个圆锥与其侧面展开图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.
已知点P(1,-2a)在二次函数y=ax2+6的图象上,并且点P关于x轴的对称点在反比例函数的图象上。(1)求此二次函数和反比例函数的解析式;(2)点(-1,4)是否同时在(1)中的两个函数图象上?