如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。 (Ⅰ)证明直线; (Ⅱ)求棱锥的体积.
(本小题满分12分)如图,四边形为矩形,平面,,平面于点,且点在上.(Ⅰ)求证:;(Ⅱ)求四棱锥的体积;(Ⅲ)设点在线段上,且,试在线段上确定一点,使得平面.
(本小题满分12分)设同时满足条件:①;②(,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足:(为常数,且,). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.
(本小题满分12分)已知函数,,将函数向左平移个单位后得函数,设三角形三个角、、的对边分别为、、.(Ⅰ)若,,,求、的值;(Ⅱ)若且,,求的取值范围.
(本小题满分12分)已知关于的一元二次函数(Ⅰ)设集合和,分别从集合和中随机取一个数作为和,求函数在区间[上是增函数的概率;(Ⅱ)设点是区域内的随机点,记有两个零点,其中一个大于,另一个小于,求事件发生的概率.
.(本小题满分14分)已知函数(I)当时,与在定义域上的单调性相反,求b的取值范围;(II)设是函数的两个零点,且求证