(本小题满分6分)某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).
已知,抛物线 y = a x 2 + bx + 3 ( a < 0 ) 与 x 轴交于 A ( 3 , 0 ) 、 B 两点,与 y 轴交于点 C ,抛物线的对称轴是直线 x = 1 , D 为抛物线的顶点,点 E 在 y 轴 C 点的上方,且 CE = 1 2 .
(1)求抛物线的解析式及顶点 D 的坐标;
(2)求证:直线 DE 是 ΔACD 外接圆的切线;
(3)在直线 AC 上方的抛物线上找一点 P ,使 S ΔACP = 1 2 S ΔACD ,求点 P 的坐标;
(4)在坐标轴上找一点 M ,使以点 B 、 C 、 M 为顶点的三角形与 ΔACD 相似,直接写出点 M 的坐标.
鄂州某个体商户购进某种电子产品的进价是50元 / 个,根据市场调研发现售价是80元 / 个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低 x 元 ( x 为偶数),每周销售量为 y 个.
(1)直接写出销售量 y 个与降价 x 元之间的函数关系式;
(2)设商户每周获得的利润为 W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:
根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,补全条形统计图.
(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?
(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.
如图,将矩形 ABCD 沿对角线 AC 翻折,点 B 落在点 F 处, FC 交 AD 于 E .
(1)求证: ΔAFE ≅ ΔCDE ;
(2)若 AB = 4 , BC = 8 ,求图中阴影部分的面积.
如图1,抛物线 y = - x 2 + bx + c 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 ) .
(1)求抛物线的表达式;
(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;
(3)如图2,点 M 为该抛物线的顶点,直线 MD ⊥ x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.