(本小题满分6分)某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).
已知:如图,为的直径,交于点,交于点. (1)求的度数; (2)求证:.
如图,在平面直角坐标系中,以A(5,1)为圆心,2个单位长度为半径的⊙A交x轴于点B、C.解答下列问题: (1)将⊙A向左平移 个单位长度与y轴首次相切,得到⊙A1.此时点A1的坐标为 ,阴影部分的面积S= ; (2)求BC的长.
某超市礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,超市决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么超市平均每天可多售出100张,超市要想平均每天盈利120元,每张贺年卡应降价多少元?
已知关于的一元二次方程有两个相等的实数根,求的值及方程的根.
我校准备从甲乙两位选手中选择一位选手代表学校参加市汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁? (2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁?