(本小题满分8分) 如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
已知:o为坐标原点,∠ AOB=300 , ∠ABO=900且A(2,0)求:过A、B、O三点的二次函数解析式
已知如图,二次函数y="ax2" +bx+c的图像过A、B、C三点 观察图像写出A、B、C三点的坐标 求出二次函数的解析式
已知二次函的图象过点(0, 5) ⑴ 求m的值,并写出二次函数的关系式; ⑵ 求出二次函数图象的顶点坐标、对称轴.
已知二次函数y=-x2 –x+4回答下列问题 (1)用配方法将其化成y="a" (x-h)2+k的形式 (2)指出抛物线的顶点坐标和对称轴 (3)当x取何值时,y随x增大而增大; 当x取何值时,y随x增大而减小?
二次函数过A(-1,0) B(0,-3)两点,且对称轴是X=1求出它的解析式