已知数列的前n项和为,,且(),数列满足,,对任意,都有.(Ⅰ)求数列、的通项公式;(Ⅱ)令,若对任意的,不等式恒成立,试求实数λ的取值范围.
已知命题P:若幂函数过点,实数满足。命题Q:实数满足。且为真,求实数的取值范围.
已知函数的定义域是且,,当时,.(1)求证:是奇函数;(2)求在区间)上的解析式;(3)是否存在正整数,使得当x∈时,不等式有解?证明你的结论.
已知抛物线,点,若斜率为的弦过点,且以为弦中点.(1)求抛物线方程;(2)若是抛物线过点的任一弦,点是抛物线准线与轴的交点,直线分别与抛物线交于两点,求证:直线的斜率为定值,并求的取值范围.
如图,在平面四边形中,,分别是边上的点,且.将沿对角线折起,使平面平面,并连结.(如图2)(Ⅰ)证明:平面;(Ⅱ)证明:;(Ⅲ)求直线与平面所成角的正弦值.
数列.(1)(2)在(1)的结论下,设