(文科做)在平面直角坐标系中,抛物线的顶点是坐标原点且经过点,其焦点在轴上,求抛物线方程.
(本小题满分12分已知二次函数f(x) 对任意x∈R,都有f (1-x)="f" (1+x)成立,设向量a="(sinx,2)," b=(2sinx,),c=(cos2x,1),d=(1,2)。 (1)分别求a·b和c·d的取值范围;(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.
(本小题满分12分)已知向量a=(cosx,2),b=(sinx,-3).(1)当a∥b时,求3cos2x-sin2x的值;(2)求函数f(x)=(a-b)·a在x∈[-,0]上的值域.
(文) (本小题满分12分) 已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
(本小题满分12分)已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn.剖析:由Sn=12n-n2知Sn是关于n的无常数项的二次函数(n∈N*),可知{an}为等差数列,求出an,然后再判断哪些项为正,哪些项为负,最后求出Tn.
(文) (本小题满分12分已知函数,(1)求函数的值域和最小正周期;(2)求函数的递减区间;