如图,直线y=x-1和抛物线y=x 2+bx+c都经过点A(1,0),B(3,2). (1)求抛物线的解析式; (2)求不等式x2+bx+c<x-1的解集(直接写出答案). (3)设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程)
(12分) 如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE (1)求证:BF是⊙O的切线; (2)若AD=4,,求BC的长.
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件。 ⑴求商场经营该商品原来一天可获利润多少元?⑵设后来该商品每件降价x元,商场一天可获利y元。①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图象的变化趋势,结合题意写出该x取何值时,商场所获利润不少于2160元?
(本题10分)为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示). ⑴请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;⑵如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?
(10分)当太阳光线与地面成45o角时,在坡度为i="1:2" 的斜坡上的一棵树AB落在坡面上的影子AC长为5米,落在水平线上的影子CD长为3米,求这棵树的高度(参 考数据,,,结果保 留两个有效数字).
(10分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中蓝球2个,红球1个,若从中任意摸出一个球,它是红球的概率为. (1)求袋中黄球的个数; (2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.