已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。(Ⅰ)求椭圆E的标准方程; (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
已知:数列是首项为1的等差数列,且公差不为零。而等比数列的前三项分别是。 (1)求数列的通项公式; (2)若,求正整数的值
数列{an}满足a1=2,an+1=-,求a2008。
设向量a =(),b =()(),函数a·b在[0,1]上的最小值与最大值的和为,又数列{}满足:. (1)求证:; (2)求的表达式; (3),试问数列{}中,是否存在正整数,使得对于任意的正整数,都有≤成立?证明你的结论.
已知数列{an}中,an=,求数列{an}的最大项.
已知数列,,(),写出这个数列的前4项,并根据规律,写出这个数列的一个通项公式.