(满分12分)现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组(1)求被选中的概率 (2)求和不全被选中的概率。
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内). (1)求此次拦查中醉酒驾车的人数; (2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数的分布列和期望.
如图,四棱锥的底面是正方形,⊥平面,,点E是SD上的点,且. (1)求证:对任意的,都有AC⊥BE; (2)若二面角C-AE-D的大小为,求的值.
在中,,,分别是角A,B,C的对边,且. (1)求角的值; (2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.
已知函数,(其中常数) (1)当时,求的极大值; (2)试讨论在区间上的单调性; (3)当时,曲线上总存在相异两点、,使得曲线在点、处的切线互相平行,求的取值范围.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2, (1)试求椭圆的方程; (2)若斜率为的直线与椭圆交于、两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.