(满分12分)现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组(1)求被选中的概率 (2)求和不全被选中的概率。
如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点. (1)若CD=2,平面ABCD⊥平面DCEF,求MN的长; (2)用反证法证明:直线ME与BN是两条异面直线.
正实数数列{an}中,a1=1,a2=5,且{}成等差数列. (1)证明:数列{an}中有无穷多项为无理数; (2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b). (1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF. (1)证明:B,D,H,E四点共圆; (2)证明:CE平分∠DEF.
如图,两条相交线段、的四个端点都在抛物线上,其中,直线的方程为,直线的方程为. (1)若,,求的值; (2)探究:是否存在常数,当变化时,恒有?