在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
在△ABC中,内角A,B,C的对边分别为a,b,c,若.(1)求证:;(2)若,且,求的值.
已知定点F(0,1)和直线:y=-1,过定点F与直线相切的动圆圆心为点C.(1)求动点C的轨迹方程;(2)过点F的直线交动点C的轨迹于两点P、Q,交直线于点R,求·的最小值;(3)过点F且与垂直的直线交动点C的轨迹于两点R、T,问四边形PRQT的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
已知是定义在上的奇函数,且,若,有恒成立.(1)判断在上是增函数还是减函数,并证明你的结论;(2)若对所有恒成立,求实数的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
如图,直三棱柱ABC-A1B1C1中, D、E分别是AB,BB1的中点.(1)证明: BC1//平面A1CD;(2)设AA1="AC=CB=1," AB=,求三棱锥D一A1CE的体积.