如图,已知椭圆到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点..(I)求此椭圆的方程及离心率;(II)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.
等差数列{}的前n项之和为,若a1=1,且, (1)求; (2)求证:
己知在锐角三角形中,角所对的边分别为,且 (1)求角大小; (2)当时,求的取值范围
某高校在2014年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示. (1)分别求第3,4,5组的频率; (2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试, (ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率; (ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官的面试,设第4组中有名学生被考官面试,求的分布列和数学期望.
某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有次答题机会,选手累计答对题或答错题即终止比赛,答对题者直接进入复赛,答错题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响. (1)求选手甲进入复赛的概率; (2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
设直线的参数方程为(为参数,为倾斜角),圆的参数方程为(为参数). (1)若直线经过圆的圆心,求直线的斜率. (2)若直线与圆交于两个不同的点,求直线的斜率的取值范围.