直线的方向向量为(2,3),直线过点(0,4)且,求的方程。
已知四棱锥中,平面,底面是直角梯形,为的重心,为的中点,在上,且; (1)求证:; (2)当二面角的正切值为多少时,平面; (3)在(2)的条件下,求直线与平面所成角 的正弦值;
已知数列中,,且当时,函数 取得极值; (Ⅰ)若,证明数列为等差数列; (Ⅱ)设数列的前项和为,求 .
已知斜三棱柱在底面上的射影恰为的中点又知; (1)求证:平面; (2)求到平面的距离; (3)求二面角的余弦值;
已知函数 (I)求函数的最小值和最小正周期; (II)设△的内角对边分别为,且, 若与共线,求的值.
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=。 求证:平面ACD⊥平面PAC; 求异面直线PC与BD所成角的余弦值; 设二面角A—PC—B的大小为,试求的值。