设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
已知函数f(x)=. (Ⅰ)求函数f(x)的定义域; (Ⅱ)判断函数f(x)的奇偶性,并证明; (Ⅲ)判断函数f(x)在定义域上的单调性,并用定义证明.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (Ⅰ)求A∪B,(C A)∩B; (Ⅱ)若A∩C≠,求a的取值范围.
已知函数. (Ⅰ)求的最小正周期及的对称中心; (Ⅱ)求在区间上的最大值和最小值.
已知,且. (Ⅰ)求的值; (Ⅱ)求的值.
设为奇函数,为常数. (Ⅰ)求的值; (Ⅱ)判断在区间(1,+∞)的单调性,并说明理由; (Ⅲ)若对于区间[3,4]上的每一个值,不等式>恒成立,求实数的取值范围.