.设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
(本小题满分12分 ,要求画图规范)用平面区域表示不等式组的解集.
(本小题满分12分)已知函数(),其中.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)若函数仅在处有极值,求的取值范围;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(本小题满分12分)已知,,若动点满足,点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)试确定的取值范围,使得对于直线:,曲线上总有不同的两点关于直线对称.
(本小题满分12分)已知是边长为的正方形的中心,点、分别是、的中点,沿对角线把正方形折成直二面角;(Ⅰ)求的大小;(Ⅱ)求二面角的余弦值;(Ⅲ)求点到面的距离.
(本小题满分12分)求一条渐近线方程是,且过点的双曲线的标准方程,并求此双曲线的离心率.