在ΔABC中,内角A,B,C所对的边分别为a,b,c,已知.(1) 求的值; (2) 若是钝角,求sinB的取值范围
(本题9分)在平面直角坐标系中,点、、。 (1)求以线段为邻边的平行四边形两条对角线的长; (2)当为何值时,与垂直; (3)当为何值时,与平行,平行时它们是同向还是反向。
(本题9分)甲袋中有3只白球、7只红球、15只黑球;乙袋中有10只白球、6只红球、9只黑球。 (1)从甲袋中任取一球,求取到白球的概率; (2)从两袋中各取一球,求两球颜色相同的概率; (3)从两袋中各取一球,求两球颜色不同的概率。
(本题9分)给出下面的数表序列:
其中表有行,第1行的个数是1,3,5,…,,从第2行起,每行中的每个数都等于它肩上的两数之和。 (1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表(不要求证明) (2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为,求数列的前项和
(本小题满分14分) 将数列中的所有项按每一行比上一行多一项的规则排成如下数表: ……………………… 记表中的第一列数构成的数列为,.为数列的前项和,且满足. (1)证明:; (2)求数列的通项公式; (3)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.
(本小题满分14分) 已知向量,其中角是的内角,分别是角的对边. (1)求角C的大小; (2)求的取值范围.