设二次函数的图象以轴为对称轴,已知,而且若点在的图象上,则点在函数的图象上(1)求的解析式(2)设,问是否存在实数,使在内是减函数,在内是增函数。
已知函数f(x)=sinωx-sin2+(ω>0)的最小正周期为π. (1)求ω的值及函数f(x)的单调递增区间. (2)当x∈时,求函数f(x)的取值范围.
设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac. (1)求B. (2)若sinAsinC=,求C.
已知函数f(x)=x2++alnx(x>0). (1)若f(x)在[1,+∞)上单调递增,求a的取值范围. (2)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有不等式[f(x1)+f(x2)]≥f成立,则称函数y=f(x)为区间D上的“凹函数”.试证当a≤0时,f(x)为“凹函数”.
已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0. (1)求f(x)的极值. (2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+. (1)求函数f(x)的最小值. (2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.