:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩。小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?
解方程:(1)x2﹣8x+1=0(2)3x(x﹣2)=2(2﹣x)(3)x2+2x﹣3=0.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(4,0)两点,与y轴交于点C,tan∠BAC=2.(1)求抛物线的解析式;(2)点P从O点出发,在线段OB上以每秒1个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动,其中一个点到达终点时,另一点也停止运动,问运动多少秒时,△PBQ的面积最大?最大面积是多少?(3)过点P向x轴作垂线,交抛物线于一点M,是否存在点M,使得点M到BC的距离等于?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O的半径.
如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm
(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.