安装在屋顶的太阳能热水器的横截面示意图如图所示.已知安装集热管的支架AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,支架BF的长度为0.9m,且与屋面AB垂直,支架AE的长度为1.7m,且与铅垂线OD的夹角为35°,支架的支撑点A、B在屋面上的距离为1.6m.求⊙O的半径;求屋面AB与水平线AD的夹角(精确到1°)
计算: (-1)2015+sin300+(2-)(2+).
计算:.
如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.
如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.