某市海产品市场管理部门规划建造面积为2400平方米的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元;每间B种类型的店面的平均面积为20平方米,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85℅.试确定A种类型店面的数量的范围;该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,最高月租金是多少?
.已知满足二元一次方程的值也是方程的解,求该二元一次方程的解.
已知关于的二元一次方程组的解是求的值.
写出二元一次方程2x+y=5的所有正整数解.
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.(1)当a=-1 , b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a和b应满足的关系式.