已知方程,(1)若此方程表示圆,求的取值范围;(2)若(1)中的圆与直线相交于、两点,且(为坐标原点),求的值;(3)在(2)的条件下,求以为直径的圆的方程。
(本小题满分14分)已知数列、满足,,数列的前项和为.(1)求数列的通项公式;(2)设,求证:;(3)求证:对任意的有成立.
(本小题满分14分)已知向量,(其中实数和不同时为零),当时,有,当时,.(1)求函数式;(2)求函数的单调递减区间;(3)若对,都有,求实数的取值范围.
(本小题满分14分)已知点C(1,0),点A、B是⊙O:上任意两个不同的点,且满足,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
(本小题满分14分)如图,四边形为矩形,且,,为上的动点.(1) 当为的中点时,求证:;(2) 设,在线段上存在这样的点E,使得二面角的平面角大小为. 试确定点E的位置.
(本小题满分12分)一个口袋中装有大小相同的2个白球和3个黑球.(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。