已知圆经过两点和,且圆心在直线上。(Ⅰ)求圆的方程;(Ⅱ)若以圆为底面的等边圆锥(轴截面为正三角形),求其内接正方体的棱长。
(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数;(Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.
【改编】(本小题满分12分)在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.
(本小题满分14分)已知函数在点处的切线为.(1)求实数,的值;(2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;(3)若,求证:.
(本小题满分13分)已知抛物线,圆.(1)在抛物线上取点,的圆周上取一点,求的最小值;(2)设为抛物线上的动点,过作圆的两条切线,交抛物线于、点,求中点的横坐标的取值范围.
(本小题满分14分)已知首项为,公比不等于的等比数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)令,数列的前项和为,求证:.