已知椭圆的右焦点为(3,0),离心率为。(1)求椭圆的方程。(2)设直线与椭圆相交于A,B两点,M,N分别为线段,的中点,若坐标原点O在以MN为直径的圆上,求的值。
已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时的解析式为f(x)=-(a∈R). (1)写出f(x)在(0,1]上的解析式; (2)求f(x)在(0,1]上的最大值.
已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值
设函数f(x)=x2+|x-2|-1,x∈R. (1)判断函数f(x)的奇偶性; (2)求函数f(x)的最小值
设二次函数f(x)=x2+ax+a,方程f(x)-x=0的两根x1和x2满足0<x1<x2<1. (1)求实数a的取值范围; (2)试比较f(0)·f(1)-f(0)与的大小,并说明理由
若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称. (1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值; (2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式; (3)在(1)(2)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.