(本小题满分13分)如图,曲线是以原点为中心,以、为焦点的椭圆的一部分,曲线是以为顶点,以为焦点的抛物线的一部分,是曲线和的交点,且为钝角,若,.(Ⅰ)求曲线和所在的椭圆和抛物线的方程;(Ⅱ)过作一条与轴不垂直的直线,分别与曲线、依次交于、、、四点(如图),若为的中点,为的中点,问是否为定值?若是,求出定值;若不是,请说明理由.
设直线与椭圆相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点. (1)证明:; (2)若的面积取得最大值时的椭圆方程.
设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线. (1)求点的轨迹方程; (2)设圆过,且圆心在曲线上,是圆在轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?
已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设 (Ⅰ)证明:; (Ⅱ)若的周长为6;写出椭圆C的方程.
已知双曲线的离心率e=2,且、分别是双曲线虚轴的上、下端点 (Ⅰ)若双曲线过点(,),求双曲线的方程; (Ⅱ)在(Ⅰ)的条件下,若、是双曲线上不同的两点,且,求直线的方程
椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且. (1)求椭圆方程; (2)若,求m的取值范围.