(本小题满分12分)已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点.(I)求椭圆的标准方程;(Ⅱ)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.
如图,矩形中,,,、分别在线段和上,∥,将矩形沿折起,记折起后的矩形为,且平面平面. (Ⅰ)求证:∥平面; (Ⅱ)求四面体体积的最大值.
如图所示,、分别是单位圆与轴、轴正半轴的交点,点在单位圆上,(),点坐标为,平行四边形的面积为. (Ⅰ)求的最大值; (Ⅱ)若∥,求.
在平面直角坐标系中,已知点,是动点,且的三边 所在直线的斜率满足. (Ⅰ)求点的轨迹的方程; (Ⅱ)点在直线上,过作(Ⅰ)中轨迹的两切线,切点分别为、,若 是直角三角形,求点的坐标.
如图,在空间直角坐标系中,正四棱锥的侧棱长与底面边长都为,点、分别在线段、上,且. (Ⅰ)求证:; (Ⅱ)求与平面所成角的正弦值.
(选修4-4:坐标系与参数方程) 已知直线的参数方程为(为参数),曲线的极坐标方程是,以极点 为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线交于、两点. (Ⅰ)写出直线的极坐标方程与曲线的普通方程; (Ⅱ)求线段、长度之积的值.