如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
如图.AD、AH分别是△ABC(其中AB>AC)的角平分线、高线,M点是AD的中点,△MDH的外接圆交CM于E,求证∠AEB=90°。
抛物线的图像于x轴交于点M,N,且经过点A(0,1),其中,过点A的直线交x轴于C点,与抛物线交于点B(异于A点),满足△CAN是等腰直角三角形,切,求解析式.
已知、是关于x的一元二次方程的两个实数根,使得成立,求其实数的可能值。
(本小题10分)如图,已知圆锥的底面半径为10 ,母线长为40 .(1)求圆锥侧面展开图的圆心角;(2)若一小虫从点A出发沿圆锥侧面绕行到母线CA的中点B处,求它所走的最短路程是多少?