甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为,固定部分为a元。(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?
设f(x)=a ln x++x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.
个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起, (4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻。
(本小题满分10分)选修4-5:不等式选讲 设关于的不等式. (I) 当,解上述不等式。 (II)若上述关于的不等式有解,求实数的取值范围。
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (I)将曲线C的极坐标方程和直线参数方程转化为普通方程; (II)若直线l与曲线C相交于A、B两点,且,试求实数值.
(本小题满分10分) 如图,在中,,平分交于点,点在上,。 (I)求证:是的外接圆的切线; (II)若,,求的长。