甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为,固定部分为a元。(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?
已知. (1)求函数在上的最小值; (2)对一切,恒成立,求实数a的取值范围; (3) 证明:对一切,都有成立.
设函数 (Ⅰ)若a=,求f(x)的单调区间; (Ⅱ)若当≥0时f(x)≥0,求a的取值范围。
如图,正方形与梯形所在的平面互相垂直,,∥,,点在线段上. (I)当点为中点时,求证:∥平面; (II)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.
已知函数,其图象过点 (Ⅰ)求的值; (Ⅱ)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值。
已知数列{}是等差数列,且满足:a1+a2+a3=6,a5=5; 数列{}满足:-=(n≥2,n∈N﹡),b1=1. (Ⅰ)求和; (Ⅱ)记数列=(n∈N﹡),若{}的前n项和为,求.