(本题8分)如图,在梯形ABCD中,AB∥DC,AB=14cm,CD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒。(1)当DQ=AP时,四边形APQD是平形四边形,求出此时t的值;(2) 试问在这样的运动过程中,是否存在某一时刻,使梯形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。
如图,已知一次函数y=kx+b的图象与y=-的图象交于A、B两点,且A点横坐标和B点纵坐标都是-2,求一次函数的解析式△AOB的面积
已知命题:如图,点A、D、B、E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.
如图,是一个由边长为1的正方形组成的网格,△ABC与△DEF都是格点三角形(顶点在网格交点处)。求出△ABC与△DEF各边的长试判断△ABC与△DEF是否相似?说明理由
先化简代数式:你能取两个不同的a值使原式的值相同吗?如果能,请举例说明;如果不能,请说明理由。
解不等式组:,并在数轴上表示出不等 式组的解集。