设函数 (其中>0,),且的图象在y轴右侧的第一个最高点的横坐标为.(1)求的最小正周期;(2)如果在区间上的最小值为,求a的值.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.
已知数列的前项和为满足.(Ⅰ)函数与函数互为反函数,令,求数列的前项和;(Ⅱ)已知数列满足,证明:对任意的整数,有.
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.(Ⅰ)当点在圆上运动时,求点的轨迹方程;(Ⅱ)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.(Ⅰ)求水面宽;(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
如图1,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).(Ⅰ)求证:;(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;(Ⅲ)求二面角的正弦值.