已知抛物线的焦点为,过点的直线与抛物线有且只有一个公共点,求直线的方程。
已知双曲线=1的右焦点是F,右顶点是A,虚轴的上端点是B,·=6-4,∠BAF=150°. (1)求双曲线的方程; (2)设Q是双曲线上的点,且过点F、Q的直线l与y轴交于点M,若+2=0,求直线l的斜率.
过点M(0,1)作直线,使它被直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M平分,求此直线方程.
在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.(1)求C1的方程;(2)平面上的点N满足=+,直线l∥MN,且与C1交于A、B两点,若·=0,求直线l的方程.
已知点P(-3,0),点A在y轴上,点Q在x轴非负半轴上,点M在直线AQ上,满足·=0,=-.(1)当点A在y轴上移动时,求动点M的轨迹C的方程;(2)设轨迹C的准线为l,焦点为F,过F作直线m交轨迹C于G,H两点,过点G作平行于轨迹C的对称轴的直线n,且n∩l=E,试问点E,O,H(O为坐标原点)是否在同一条直线上?并说明理由.
如图所示,倾斜角为的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点.(1)求抛物线焦点F的坐标及准线l的方程;(2)若为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2为定值, 并求此定值.