(本题10分)在直角坐标平面内,二次函数图象的顶点为A(1,-4)且经过点B(3,0).(1)求该二次函数的解析式.(2)求直线y=-x-1与该二次函数图象的交点的坐标.
已知点A(-2,0)B(4,0)C(-2,-3)。(1)求A、B两点之间的距离。(2)求点C到X轴的距离。(3)求△ABC的面积。
已知方程组的解和是2,求的值
补全下列各题解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知)∠2=∠3 ∠1=∠4 ( )∴∠3=∠4 ( 等量代换 )∴_DB__∥_____ ( )∴∠C=∠ABD ( )∵∠C=∠D ( 已 知 )∴∠D=∠ABD( )∴DF∥AC( )
(1)计算:(2)解方程组
书生中学小卖部工作人员到路桥批发部选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量(个)与甲品牌文具盒数量(个)之间的函数关系如图所示,当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7 200元.(1)根据图象,求与之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货价;(3)若小卖部每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学校后勤部决定,准备用不超过6 300元购进甲、乙两种品牌的文具盒,且这两种文具盒全部售出后获利不低于1 795元,问小卖部工作人员有几种进货方案?哪种进货方案能使获利最大?最大获利为多少元?