如图,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,求∠BOD的度数。
如图,梯形ABCD中,AD//BC,E为CD边的中点,F为AD延长线上一点,且满足DF+BF=BC. (1)若∠A=90º,AD=3,AB=5,BC=9,求BE的长; (2)求证:BE平分∠FBC.
为奖励“我的中国梦”暑期系列实践活动的获奖学生,学校准备在某商店购买A,B两种文具作为奖品,已知一件A种文具的单价比B种文具的单价便宜4元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.(1)求A种文具的单价;(2)根据需要,学校准备在该商店购买A,B两种文具共200件,其中A种文具的件数不多于B种文具件数的3倍.为了节约经费,应购买A,B两种文具各多少件?使用经费最少为多少元?
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标,并求出此时的周长;(3)在直线l上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.
锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0).(1)求△ABC中边BC上高AD;(2)当x为何值时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
该商品以每千克50元为售价,在此基础上设每千克的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?