.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足=2时的概率。⑵的数学期望。
.已知等比数列中,且,,求公比,通项公式及前项和.
如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2. (1)求异面直线PC与BD所成的角; (2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤. 有甲、乙两个箱子,甲箱中有张卡片,其中张写有数字,张写有数字,张写有数字;乙箱中也有张卡片,其中张写有数字,张写有数字,张写有数字. (1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为,求的 分布列及的数学期望; (2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有 数字的概率是多少?
B.选修4—2 矩阵与变换 已知矩阵,其中,若点在矩阵的变换下得到点, (1)求实数a的值; (2)求矩阵的特征值及其对应的特征向量.