(本小题满分16分)已知函数的图象在上连续不断,定义:,其中,表示函数在区间上的最小值,表示函数在区间上的最大值.若存在最小正整数,使得对任意的成立,则称函数为区间上的“阶收缩函数”.(1)若,试写出的表达式;(2)已知函数试判断是否为上的“阶收缩函数”,如果是,求出相应的;如果不是,请说明理由;(3)已知函数是上的2阶收缩函数,求的取值范围.
设数列满足,,写出这个数列的前5项并归纳猜想通项公式。
在△ABC中,已知,,B=45°求A、C及c
如图,是圆的直径,点在圆上,,交于点,平面,,. (Ⅰ)证明:; (Ⅱ)求平面与平面所成的锐二面角的余弦值.
在今年伦敦奥运会期间,来自美国和英国的共计6名志愿者被随机地平均分配到跳水、篮球、体操这三个岗位服务,且跳水岗位至少有一名美国志愿者的概率是. (Ⅰ)求6名志愿者中来自美国、英国的各几人; (Ⅱ)求篮球岗位恰好美国人、英国人各一人的概率. (Ⅲ)设随机变量为在体操岗位服务的美国志愿者的个数,求的分布列及期望
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.