A处一缉私艇发现在北偏东45°方向,距离12 n mile的海面C处有一走私船正以10 n mile/h的速度沿东偏南15°方向逃窜.缉私艇的速度为14 n mile/h,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.
(本小题满分14分)设函数f(x)=ln x+在(e,+∞)内有极值. (Ⅰ)求实数a的取值范围; (Ⅱ)若存在x0>1使得k>f(x0)+成立,求整数k的最小值; (Ⅲ)若x1∈(0,1),x2∈(1,+∞).求证:f(x2)-f(x1)>e+2-(注:e是自然对数的底数).
(本小题满分13分)已知椭圆过点,且与抛物线有一个公共的焦点. (Ⅰ)求椭圆方程; (Ⅱ)斜率为的直线过椭圆的右焦点,且与椭圆交于两点,求弦的长; (Ⅲ)为直线上的一点,在第(Ⅱ)题的条件下,若△为等边三角形,求直线的方程.
(本小题满分12分)数列的前项和为,且,数列满足. (Ⅰ)求数列和的通项公式; (Ⅱ)设数列满足,其前项和为,如果不等式M≥对n∈N*恒成立,求M的最小值.
(本小题满分12分)已知∠ACB=45°,B、C为定点且BC=3,A为动点,作AD⊥BC,垂足D在线段BC上且异于点B,如图1。连接AB,沿将△折起,使∠BDC=90°,如图2. (Ⅰ)当A点在何处时,三棱锥A-BCD的体积最大; (Ⅱ)当三棱锥A-BCD的体积最大时,分别取BC,AC的中点E、M,试在棱CD上确定一点N,使得EN⊥BM,并求此时EN与平面BMN所成角的大小.
(本小题满分12分)已知函数,其中ω是使得函数图象相邻两对称轴间的距离不超过的最小正整数,若将的图象先向左平移个单位,再向下平移1个单位,所得的函数为奇函数. (Ⅰ)求的解析式,并求的对称中心; (Ⅱ)△ABC中,如果f()=2,b=4,且asinA-bsinB=sinC(c-b),求△ABC的面积.