(本小题满分14分) 已知函数,且函数是上的增函数。(1)求的取值范围;(2)若对任意的,都有(e是自然对数的底),求满足条件的最大整数的值。
已知是函数的一个极值点,其中, (I)求与的关系式;(II)求的单调区间; (III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.
函数, (1)若的定义域为,求实数的取值范围. (2)若的定义域为[-2,1],求实数a的值.
已知,数列{an}满足:,. (Ⅰ)求证:; (Ⅱ)判断an与an+1的大小,并说明理由.
已知函数,. (Ⅰ)求函数的最大值; (Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.
如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E、F分别为棱BC、AD的中点. (Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值; (Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.