(本小题满分12分)某校为宣传县教育局提出的“教育发展,我的责任”教育实践活动,要举行一次以“我为教育发展做什么”为主题的的演讲比赛,比赛分为初赛、复赛、决赛三个阶段进行,已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.(I)求该选手在复赛阶段被淘汰的概率;(II)设该选手在比赛中比赛的次数为,求的分布列、数学期望和方差.
已知函数。 (1)求函数在区间上的值域; (2)是否存在实数a,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出a的取值范围;若不存在,请说明理由.
在数列中,,且前n项的算术平均数等于第n项的倍(). (1)写出此数列的前5项; (2)归纳猜想的通项公式,并用数学归纳法证明.
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中。已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是. (1)求小球落入A袋中的概率P(A); (2)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.
已知是二次函数,方程有两个相等的实数根,且。 (1)求的表达式; (2)若直线把的图象与两坐标轴围成的图形面积二等分,求t的值.
已知展开式的二项式系数和为512,且. 求的值;(2)求的值.